
18.100A - Problem Set 6 Campbell Hewett

Problem Set 6

Problem 1

Suppose f(x) and g(x) are integrable on [a, b] and that g(x) is bounded below by c > 0 on [a, b]. It suffices

to show that 1
g(x) is integrable on [a, b] because then f(x)

g(x) = f(x) · 1
g(x) is integrable. For this, first note that

1
g(x) is defined and bounded because g(x) > c > 0. Now, suppose ε > 0. Because g(x) is integrable, there

exists δ > 0 such that for all partitions P with |P| < δ,

|Ug(P)− Lg(P)| < c2ε.

So, for all such P,

∣∣U1/g(P)− L1/g(P)
∣∣ =

∣∣∣∣∣
n∑
i=1

(
sup
[∆xi]

1

g(x)
− inf

[∆xi]

1

g(x)

)
∆xi

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(
1

inf [∆xi] g(x)
− 1

sup[∆xi] g(x)

)
∆xi

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(
sup[∆xi] g(x)− inf [∆xi] g(x)

inf [∆xi] g(x) · sup[∆xi] g(x)

)
∆xi

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

(
sup[∆xi] g(x)− inf [∆xi] g(x)(

inf [a,b] g(x)
)2

)
∆xi

∣∣∣∣∣
=

1

c2

∣∣∣∣∣
n∑
i=1

(
sup
[∆xi]

g(x)− inf
[∆xi]

g(x)

)
∆xi

∣∣∣∣∣
=

1

c2
|Ug(P)− Lg(P)|

< ε.

This proves that 1
g(x) is integrable.

Problem 2

Let f(x) = g(x) = x on the interval [1, 3]. These are integrable and g(x) is bounded below by c = 1 > 0.
Compute ∫ 3

1
f(x)dx∫ 3

1
g(x)dx

=

∫ 3

1
xdx∫ 3

1
xdx

= 1 6= 2 =

∫ 3

1

dx =

∫ 3

1

f(x)

g(x)
dx.

Problem 3

Suppose f(x) is integrable on [a, b] and f(x) = 0 whenever x is rational. Suppose P is any partition of [a, b].
An interval [∆xi] must contain some rational number, so inf [∆xi] |f(x)| = 0. Therefore,

L|f |(P) =

n∑
i=1

(
inf

[∆xi]
|f(x)|

)
∆xi = 0.

But, |f(x)| is integrable, so Corollary 19.2 says∫ b

a

|f(x)|dx = 0.

Therefore, ∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx = 0

and ∫ b

a

f(x)dx = 0.
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Problem 4

Suppose f(x) and g(x) are integrable on [a, b]. First,

max(f(x), g(x)) =
f(x) + g(x) + |f(x)− g(x)|

2
.

f(x) − g(x) is integrable, so |f(x) − g(x)| is integrable. Hence, max(f(x), g(x)) is integrable by linearity.
Furthermore, f(x) ≤ max(f(x), g(x)) and g(x) ≤ max(f(x), g(x)), so∫ b

a

f(x)dx ≤
∫ b

a

max(f(x), g(x))dx, and

∫ b

a

g(x)dx ≤
∫ b

a

max(f(x), g(x))dx.

Therefore,

max

(∫ b

a

f(x)dx,

∫ b

a

g(x)dx

)
≤
∫ b

a

max(f(x), g(x))dx.

Problem 5

Let n be a positive integer, and suppose ∫ 1

−1

1

tn
dt

were convergent. This implies ∫ 1

0

1

tn
dt

is convergent. On any interval (ε, 1), where 0 < ε < 1, 1
tn has anti-derivative

F (t) =

{
log t if n = 1
−1

(n−1)tn−1 if n ≥ 2
,

so ∫ 1

0

1

tn
dt = lim

ε→0

∫ 1

ε

1

tn
dt = lim

ε→0
(F (1)− F (ε)) =∞.

This is a contradiction, so ∫ 1

−1

1

tn
dt

cannot be convergent.

Problem 6

(a) We claim that ∫ ∞
0

x

1 + x3
dx

converges. First, ∫ ∞
0

x

1 + x3
dx =

∫ 1

0

x

1 + x3
dx+

∫ ∞
1

x

1 + x3
dx,

so it suffices to show convergence on [1,∞). For this, observe that

lim
x→∞

x
1+x3

1
x2

= lim
x→∞

x3

1 + x3
= 1,

so it suffices to show that ∫ ∞
1

1

x2
dx

converges. Thus, compute ∫ ∞
1

1

x2
dx = lim

R→∞

(
−1

R
+ 1

)
= 1.
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(e) Set u = x2, so that du = 2xdx and∫ ∞
0

xke−x
2

dx =

∫ ∞
0

1

2
u

k−1
2 e−udu.

This equals 1
2Γ
(
k+1

2

)
if k+1

2 > 0 (i.e., k > −1), and diverges otherwise.

(f) We claim that ∫ 1

0

dx√
x− x3

converges. Note that the integrand is unbounded at both ends, so break it up into∫ 1

0

dx√
x− x3

=

∫ c

0

dx√
x− x3

+

∫ 1

c

dx√
x− x3

for some 0 < c < 1. Observe that

lim
x→0+

1√
x−x3

1√
x

= lim
x→0+

√
1

1− x2
= 1,

so to show that the first integral converges, it suffices to show that∫ c

0

1√
x
dx

converges. Thus, compute∫ 1

0

1√
x
dx = lim

ε→0+

∫ 1

ε

1√
x
dx = lim

ε→0+
(2
√

1− 2
√
ε) = 2.

Now,

lim
x→1−

1√
x−x3

1√
2
√

1−x
= lim
x→1−

√
2

x+ x2
= 1,

so to show that the second integral converges, it suffices to show that∫ 1

c

1√
2
√

1− x
dx

converges. For this, use a substitution y = 1− x:∫ 1

c

1√
2
√

1− x
dx =

1√
2

∫ 1−c

0

1
√
y
dy,

which we already showed converges.

(h) We claim that ∫ ∞
1

sin

(
1

x

)
dx

diverges. Observe that

lim
x→∞

sin
(

1
x

)
1
x

= lim
ε→0

sin ε

ε
= 1,

so it suffices to show that ∫ ∞
1

dx

x

diverges. For this, ∫ ∞
1

dx

x
= lim
R→∞

∫ R

1

dx

x
= lim
R→∞

(logR− log 1) =∞.
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Problem 7

Let f and g be continuous and positive, and assume that
∫∞

0
f(x)dx converges and that g(x) is bounded.

Let M > 0 be such that g(x) < M for all x. Then, f(x)g(x) ≤Mf(x) and∫ ∞
0

Mf(x)dx = M

∫ ∞
0

f(x)dx

converges, so ∫ ∞
0

f(x)g(x)dx

converges by Theorem 21.2B.

Problem 8

Let

f(x) = g(x) =

{
1√
x

if 0 < x ≤ 1
1
x2 if 1 ≤ x

.

Then, ∫ ∞
0

f(x)dx =

∫ 1

0

dx√
x

+

∫ 1

0

dx

x2
= 2 + 1 = 3

(see Problem 6 above). However, ∫ ∞
0

f(x)g(x)dx =

∫ 1

0

dx

x
+

∫ ∞
1

dx

x4

diverges because the first integral on the right hand side diverges (see Problem 5 above).

Problem 9

Let f(x) be continuous on (0, 1), and suppose
∫ 1

0
|f(x)|pdx converges for some p > 1. By Young’s inequality,

|f(x)| ≤ 1

p
|f(x)|p +

1

1− p
,

so
∫ 1

0
|f(x)|dx converges by Theorem 21.2B. This implies

∫ 1

0
f(x)dx converges by Theorem 21.4.

Problem 10

(a) Let u = x2, so that du = 2xdx and∫ ∞
0

sin(x2)dx =

∫ ∞
0

sinu

2
√
u
du =

∫ 1

0

sinu

2
√
u
du+

∫ ∞
1

sinu

2
√
u
du.

For the first term on the right hand side, notice that when 0 < u ≤ 1,

0 ≤ sinu

2
√
u
<

1

2
√
u
.

The integral ∫ 1

0

1

2
√
u
du

converges (see Problem 6 above), so ∫ 1

0

sinu

2
√
u
du

converges as well by Theorem 21.2B. For the second term, we use integration by parts. Set v = 1
2
√
u

and dw = sinudu. Then, dv = − 1
4u3/2 du and w = − cosu, so that∫ ∞

1

sinu

2
√
u
du = − 1

2
√
u

cosu
]∞

1
−
∫ ∞

1

cosu

4u3/2
du =

cos 1

2
−
∫ ∞

1

cosu

4u3/2
du.
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The integral on the right hand side is absolutely convergent because∣∣∣ cosu

4u3/2

∣∣∣ ≤ 1

4u3/2

and ∫ ∞
1

1

4u3/2
du

converges. This proves that
∫∞

0
sin(x2)dx converges.

(b) First, note that when n ≥ 0 is an integer and π
4 + nπ ≤ u ≤ 3π

4 + nπ,∣∣∣∣ sinu2
√
u

∣∣∣∣ ≥ 1

2
√

2

1√
u
≥ 1

2
√

2

1√
3π/4 + nπ

.

Therefore, we can bound the integral below by restricting to all such intervals:∫ 3π/4+Nπ

0

∣∣∣∣ sinu2
√
u

∣∣∣∣ du ≥ N∑
n=0

∫ 3π/4+nπ

π/4+nπ

∣∣∣∣ sinu2
√
u

∣∣∣∣ du
≥

N∑
n=0

1

2
√

2

1√
3π/4 + nπ

∫ 3π/4+nπ

π/4+nπ

du

=

√
π

4
√

2

N∑
n=0

1√
3/4 + n

.

As N goes to infinity, this sum diverges, so
∫∞

0

∣∣∣ sinu2
√
u

∣∣∣ du diverges as well.

Problem 11

Suppose limx→∞ f(x) = 0,
∫∞
a
f ′(x)dx is absolutely convergent, and f ′(x) is continuous for x ≥ a. To show

that ∫ ∞
a

f(x) sinxdx

converges, we use integration by parts. Let u = f(x) and dv = sinxdx, so that du = f ′(x)dx and v = − cosx.
Thus,∫ R

a

f(x) sinxdx = −f(x) cosx
]R
a

+

∫ R

a

f ′(u) cosudu = f(a) cos a− f(R) cosR+

∫ R

a

f ′(u) cosudu. (1)

First,

0 ≤
∣∣∣ lim
R→∞

f(R) cosR
∣∣∣ = lim

R→∞
|f(R) cosR| ≤ lim

R→∞
|f(R)| =

∣∣∣ lim
R→∞

f(R)
∣∣∣ = 0,

so limR→∞ f(R) cosR = 0. Second,

lim
R→∞

∫ R

a

|f ′(u) cosu|du ≤ lim
R→∞

∫ R

a

|f ′(u)|du <∞,

so
∫∞
a
f ′(u) cosudu is absolutely convergent (and therefore convergent). Thus, taking R to infinity in equa-

tion (1) shows
∫∞
a
f(x) sinxdx converges.


