Problem Set 6

Problem 1

Suppose $f(x)$ and $g(x)$ are integrable on $[a, b]$ and that $g(x)$ is bounded below by $c>0$ on $[a, b]$. It suffices to show that $\frac{1}{g(x)}$ is integrable on $[a, b]$ because then $\frac{f(x)}{g(x)}=f(x) \cdot \frac{1}{g(x)}$ is integrable. For this, first note that $\frac{1}{g(x)}$ is defined and bounded because $g(x)>c>0$. Now, suppose $\epsilon>0$. Because $g(x)$ is integrable, there exists $\delta>0$ such that for all partitions \mathcal{P} with $|\mathcal{P}|<\delta$,

$$
\left|U_{g}(\mathcal{P})-L_{g}(\mathcal{P})\right|<c^{2} \epsilon
$$

So, for all such \mathcal{P},

$$
\begin{aligned}
\left|U_{1 / g}(\mathcal{P})-L_{1 / g}(\mathcal{P})\right| & =\left|\sum_{i=1}^{n}\left(\sup _{\left[\Delta x_{i}\right]} \frac{1}{g(x)}-\inf _{\left[\Delta x_{i}\right]} \frac{1}{g(x)}\right) \Delta x_{i}\right| \\
& =\left|\sum_{i=1}^{n}\left(\frac{1}{\inf _{\left[\Delta x_{i}\right]} g(x)}-\frac{1}{\sup _{\left[\Delta x_{i}\right]} g(x)}\right) \Delta x_{i}\right| \\
& =\left|\sum_{i=1}^{n}\left(\frac{\sup _{\left[\Delta x_{i}\right]} g(x)-\inf _{\left[\Delta x_{i}\right]} g(x)}{\inf _{\left[\Delta x_{i}\right]} g(x) \cdot \sup _{\left[\Delta x_{i}\right]} g(x)}\right) \Delta x_{i}\right| \\
& \leq\left|\sum_{i=1}^{n}\left(\frac{\sup _{\left[\Delta x_{i}\right]} g(x)-\inf _{\left[\Delta x_{i}\right]} g(x)}{\left(\inf _{[a, b]} g(x)\right)^{2}}\right) \Delta x_{i}\right| \\
& =\frac{1}{c^{2}}\left|\sum_{i=1}^{n}\left(\sup _{\left[\Delta x_{i}\right]} g(x)-\inf _{\left[\Delta x_{i}\right]} g(x)\right) \Delta x_{i}\right| \\
& =\frac{1}{c^{2}}\left|U_{g}(\mathcal{P})-L_{g}(\mathcal{P})\right| \\
& <\epsilon .
\end{aligned}
$$

This proves that $\frac{1}{g(x)}$ is integrable.

Problem 2

Let $f(x)=g(x)=x$ on the interval $[1,3]$. These are integrable and $g(x)$ is bounded below by $c=1>0$. Compute

$$
\frac{\int_{1}^{3} f(x) d x}{\int_{1}^{3} g(x) d x}=\frac{\int_{1}^{3} x d x}{\int_{1}^{3} x d x}=1 \neq 2=\int_{1}^{3} d x=\int_{1}^{3} \frac{f(x)}{g(x)} d x
$$

Problem 3

Suppose $f(x)$ is integrable on $[a, b]$ and $f(x)=0$ whenever x is rational. Suppose \mathcal{P} is any partition of $[a, b]$. An interval $\left[\Delta x_{i}\right]$ must contain some rational number, so $\inf _{\left[\Delta x_{i}\right]}|f(x)|=0$. Therefore,

$$
L_{|f|}(\mathcal{P})=\sum_{i=1}^{n}\left(\inf _{\left[\Delta x_{i}\right]}|f(x)|\right) \Delta x_{i}=0
$$

But, $|f(x)|$ is integrable, so Corollary 19.2 says

$$
\int_{a}^{b}|f(x)| d x=0
$$

Therefore,

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x=0
$$

and

$$
\int_{a}^{b} f(x) d x=0
$$

Problem 4

Suppose $f(x)$ and $g(x)$ are integrable on $[a, b]$. First,

$$
\max (f(x), g(x))=\frac{f(x)+g(x)+|f(x)-g(x)|}{2}
$$

$f(x)-g(x)$ is integrable, so $|f(x)-g(x)|$ is integrable. Hence, $\max (f(x), g(x))$ is integrable by linearity. Furthermore, $f(x) \leq \max (f(x), g(x))$ and $g(x) \leq \max (f(x), g(x))$, so

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} \max (f(x), g(x)) d x, \quad \text { and } \quad \int_{a}^{b} g(x) d x \leq \int_{a}^{b} \max (f(x), g(x)) d x
$$

Therefore,

$$
\max \left(\int_{a}^{b} f(x) d x, \int_{a}^{b} g(x) d x\right) \leq \int_{a}^{b} \max (f(x), g(x)) d x
$$

Problem 5

Let n be a positive integer, and suppose

$$
\int_{-1}^{1} \frac{1}{t^{n}} d t
$$

were convergent. This implies

$$
\int_{0}^{1} \frac{1}{t^{n}} d t
$$

is convergent. On any interval $(\epsilon, 1)$, where $0<\epsilon<1, \frac{1}{t^{n}}$ has anti-derivative

$$
F(t)= \begin{cases}\log t & \text { if } n=1 \\ \frac{-1}{(n-1) t^{n-1}} & \text { if } n \geq 2\end{cases}
$$

so

$$
\int_{0}^{1} \frac{1}{t^{n}} d t=\lim _{\epsilon \rightarrow 0} \int_{\epsilon}^{1} \frac{1}{t^{n}} d t=\lim _{\epsilon \rightarrow 0}(F(1)-F(\epsilon))=\infty
$$

This is a contradiction, so

$$
\int_{-1}^{1} \frac{1}{t^{n}} d t
$$

cannot be convergent.

Problem 6

(a) We claim that

$$
\int_{0}^{\infty} \frac{x}{1+x^{3}} d x
$$

converges. First,

$$
\int_{0}^{\infty} \frac{x}{1+x^{3}} d x=\int_{0}^{1} \frac{x}{1+x^{3}} d x+\int_{1}^{\infty} \frac{x}{1+x^{3}} d x
$$

so it suffices to show convergence on $[1, \infty)$. For this, observe that

$$
\lim _{x \rightarrow \infty} \frac{\frac{x}{1+x^{3}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x^{3}}{1+x^{3}}=1
$$

so it suffices to show that

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

converges. Thus, compute

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{R \rightarrow \infty}\left(\frac{-1}{R}+1\right)=1
$$

(e) Set $u=x^{2}$, so that $d u=2 x d x$ and

$$
\int_{0}^{\infty} x^{k} e^{-x^{2}} d x=\int_{0}^{\infty} \frac{1}{2} u^{\frac{k-1}{2}} e^{-u} d u
$$

This equals $\frac{1}{2} \Gamma\left(\frac{k+1}{2}\right)$ if $\frac{k+1}{2}>0$ (i.e., $k>-1$), and diverges otherwise.
(f) We claim that

$$
\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}
$$

converges. Note that the integrand is unbounded at both ends, so break it up into

$$
\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}=\int_{0}^{c} \frac{d x}{\sqrt{x-x^{3}}}+\int_{c}^{1} \frac{d x}{\sqrt{x-x^{3}}}
$$

for some $0<c<1$. Observe that

$$
\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{\sqrt{x-x^{3}}}}{\frac{1}{\sqrt{x}}}=\lim _{x \rightarrow 0^{+}} \sqrt{\frac{1}{1-x^{2}}}=1
$$

so to show that the first integral converges, it suffices to show that

$$
\int_{0}^{c} \frac{1}{\sqrt{x}} d x
$$

converges. Thus, compute

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x=\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{1} \frac{1}{\sqrt{x}} d x=\lim _{\epsilon \rightarrow 0^{+}}(2 \sqrt{1}-2 \sqrt{\epsilon})=2
$$

Now,

$$
\lim _{x \rightarrow 1^{-}} \frac{\frac{1}{\sqrt{x-x^{3}}}}{\frac{1}{\sqrt{2} \sqrt{1-x}}}=\lim _{x \rightarrow 1^{-}} \sqrt{\frac{2}{x+x^{2}}}=1
$$

so to show that the second integral converges, it suffices to show that

$$
\int_{c}^{1} \frac{1}{\sqrt{2} \sqrt{1-x}} d x
$$

converges. For this, use a substitution $y=1-x$:

$$
\int_{c}^{1} \frac{1}{\sqrt{2} \sqrt{1-x}} d x=\frac{1}{\sqrt{2}} \int_{0}^{1-c} \frac{1}{\sqrt{y}} d y
$$

which we already showed converges.
(h) We claim that

$$
\int_{1}^{\infty} \sin \left(\frac{1}{x}\right) d x
$$

diverges. Observe that

$$
\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{\epsilon \rightarrow 0} \frac{\sin \epsilon}{\epsilon}=1
$$

so it suffices to show that

$$
\int_{1}^{\infty} \frac{d x}{x}
$$

diverges. For this,

$$
\int_{1}^{\infty} \frac{d x}{x}=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{d x}{x}=\lim _{R \rightarrow \infty}(\log R-\log 1)=\infty
$$

Problem 7

Let f and g be continuous and positive, and assume that $\int_{0}^{\infty} f(x) d x$ converges and that $g(x)$ is bounded. Let $M>0$ be such that $g(x)<M$ for all x. Then, $f(x) g(x) \leq M f(x)$ and

$$
\int_{0}^{\infty} M f(x) d x=M \int_{0}^{\infty} f(x) d x
$$

converges, so

$$
\int_{0}^{\infty} f(x) g(x) d x
$$

converges by Theorem 21.2B.

Problem 8

Let

$$
f(x)=g(x)= \begin{cases}\frac{1}{\sqrt{x}} & \text { if } 0<x \leq 1 \\ \frac{1}{x^{2}} & \text { if } 1 \leq x\end{cases}
$$

Then,

$$
\int_{0}^{\infty} f(x) d x=\int_{0}^{1} \frac{d x}{\sqrt{x}}+\int_{0}^{1} \frac{d x}{x^{2}}=2+1=3
$$

(see Problem 6 above). However,

$$
\int_{0}^{\infty} f(x) g(x) d x=\int_{0}^{1} \frac{d x}{x}+\int_{1}^{\infty} \frac{d x}{x^{4}}
$$

diverges because the first integral on the right hand side diverges (see Problem 5 above).

Problem 9

Let $f(x)$ be continuous on $(0,1)$, and suppose $\int_{0}^{1}|f(x)|^{p} d x$ converges for some $p>1$. By Young's inequality,

$$
|f(x)| \leq \frac{1}{p}|f(x)|^{p}+\frac{1}{1-p}
$$

so $\int_{0}^{1}|f(x)| d x$ converges by Theorem 21.2B. This implies $\int_{0}^{1} f(x) d x$ converges by Theorem 21.4.

Problem 10

(a) Let $u=x^{2}$, so that $d u=2 x d x$ and

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \frac{\sin u}{2 \sqrt{u}} d u=\int_{0}^{1} \frac{\sin u}{2 \sqrt{u}} d u+\int_{1}^{\infty} \frac{\sin u}{2 \sqrt{u}} d u
$$

For the first term on the right hand side, notice that when $0<u \leq 1$,

$$
0 \leq \frac{\sin u}{2 \sqrt{u}}<\frac{1}{2 \sqrt{u}}
$$

The integral

$$
\int_{0}^{1} \frac{1}{2 \sqrt{u}} d u
$$

converges (see Problem 6 above), so

$$
\int_{0}^{1} \frac{\sin u}{2 \sqrt{u}} d u
$$

converges as well by Theorem 21.2B. For the second term, we use integration by parts. Set $v=\frac{1}{2 \sqrt{u}}$ and $d w=\sin u d u$. Then, $d v=-\frac{1}{4 u^{3 / 2}} d u$ and $w=-\cos u$, so that

$$
\left.\int_{1}^{\infty} \frac{\sin u}{2 \sqrt{u}} d u=-\frac{1}{2 \sqrt{u}} \cos u\right]_{1}^{\infty}-\int_{1}^{\infty} \frac{\cos u}{4 u^{3 / 2}} d u=\frac{\cos 1}{2}-\int_{1}^{\infty} \frac{\cos u}{4 u^{3 / 2}} d u
$$

The integral on the right hand side is absolutely convergent because

$$
\left|\frac{\cos u}{4 u^{3 / 2}}\right| \leq \frac{1}{4 u^{3 / 2}}
$$

and

$$
\int_{1}^{\infty} \frac{1}{4 u^{3 / 2}} d u
$$

converges. This proves that $\int_{0}^{\infty} \sin \left(x^{2}\right) d x$ converges.
(b) First, note that when $n \geq 0$ is an integer and $\frac{\pi}{4}+n \pi \leq u \leq \frac{3 \pi}{4}+n \pi$,

$$
\left|\frac{\sin u}{2 \sqrt{u}}\right| \geq \frac{1}{2 \sqrt{2}} \frac{1}{\sqrt{u}} \geq \frac{1}{2 \sqrt{2}} \frac{1}{\sqrt{3 \pi / 4+n \pi}}
$$

Therefore, we can bound the integral below by restricting to all such intervals:

$$
\begin{aligned}
\int_{0}^{3 \pi / 4+N \pi}\left|\frac{\sin u}{2 \sqrt{u}}\right| d u & \geq \sum_{n=0}^{N} \int_{\pi / 4+n \pi}^{3 \pi / 4+n \pi}\left|\frac{\sin u}{2 \sqrt{u}}\right| d u \\
& \geq \sum_{n=0}^{N} \frac{1}{2 \sqrt{2}} \frac{1}{\sqrt{3 \pi / 4+n \pi}} \int_{\pi / 4+n \pi}^{3 \pi / 4+n \pi} d u \\
& =\frac{\sqrt{\pi}}{4 \sqrt{2}} \sum_{n=0}^{N} \frac{1}{\sqrt{3 / 4+n}}
\end{aligned}
$$

As N goes to infinity, this sum diverges, so $\int_{0}^{\infty}\left|\frac{\sin u}{2 \sqrt{u}}\right| d u$ diverges as well.

Problem 11

Suppose $\lim _{x \rightarrow \infty} f(x)=0, \int_{a}^{\infty} f^{\prime}(x) d x$ is absolutely convergent, and $f^{\prime}(x)$ is continuous for $x \geq a$. To show that

$$
\int_{a}^{\infty} f(x) \sin x d x
$$

converges, we use integration by parts. Let $u=f(x)$ and $d v=\sin x d x$, so that $d u=f^{\prime}(x) d x$ and $v=-\cos x$. Thus,

$$
\begin{equation*}
\left.\int_{a}^{R} f(x) \sin x d x=-f(x) \cos x\right]_{a}^{R}+\int_{a}^{R} f^{\prime}(u) \cos u d u=f(a) \cos a-f(R) \cos R+\int_{a}^{R} f^{\prime}(u) \cos u d u \tag{1}
\end{equation*}
$$

First,

$$
0 \leq\left|\lim _{R \rightarrow \infty} f(R) \cos R\right|=\lim _{R \rightarrow \infty}|f(R) \cos R| \leq \lim _{R \rightarrow \infty}|f(R)|=\left|\lim _{R \rightarrow \infty} f(R)\right|=0
$$

so $\lim _{R \rightarrow \infty} f(R) \cos R=0$. Second,

$$
\lim _{R \rightarrow \infty} \int_{a}^{R}\left|f^{\prime}(u) \cos u\right| d u \leq \lim _{R \rightarrow \infty} \int_{a}^{R}\left|f^{\prime}(u)\right| d u<\infty
$$

so $\int_{a}^{\infty} f^{\prime}(u) \cos u d u$ is absolutely convergent (and therefore convergent). Thus, taking R to infinity in equation (1) shows $\int_{a}^{\infty} f(x) \sin x d x$ converges.

